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7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation 7 :V —
w.

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T ) and the image of T (denoted im T or T'(V)) are defined by

kerT={vinV|T(v)=0}
im7T ={T(v)|vinV}=T(V)

The kernel of T is often called the nullspace of T because it consists
T of all vectors v in V satisfying the condition that T(v) =0. The image

' of T is often called the range of T and consists of all vectors w in W
@.»3 of the form w =T (v) for some v in V. These subspaces are depicted

in the diagrams.
Example 7.2.1

} Let T4 : R" — R™ be the linear transformation induced by the
@ m x n matrix A, that is Ty (x) = Ax for all columns x in R".
‘ Then

ker Ty = {x|Ax=0}=nullA and
im7y ={Ax|xin R"} = imA

Hence the following theorem extends Example 5.1.2.

Theorem 7.2.1

Let T :V — W be a linear transformation.

1. ker T is a subspace of V.

2. im T is a subspace of W.

Proof. The fact that T(0) = 0 shows that ker 7 and im T contain the zero vector of V and W
respectively.

1. If v and vy lie in ker T, then T'(v) =0=T(vy), so

T(v+vy))=T(v)+T(vi)=04+0=0
T(rv)=rT(v)=r0=0 forallrinR
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Hence v+v; and rv lie in ker T (they satisfy the required condition), so ker T is a subspace
of V by the subspace test (Theorem 6.2.1).

2. If w and wy lie in im 7', write w = T(v) and w| = T(v]) where v, v € V. Then

wH+w, =TWV)+T(v))=T(v+vy)
rw=rT(v)=T(rv) forallrinR

Hence w+w; and rw both lie in im 7 (they have the required form), so im T is a subspace
of W.

[]

Given a linear transformation 7 :V — W:

dim (ker T') is called the nullity of T and denoted as nullity (T')
dim (im 7') is called the rank of T and denoted as rank (T')

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A.
The two usages of the word rank are consistent in the following sense. Recall the definition of T
in Example 7.2.1.

Example 7.2.2

Given an m X n matrix A, show that im Ty = col A, so rank T4 = rank A.
Solution. Write A = [ cp - Cp ] in terms of its columns. Then

im Ty = {Ax |x in R"} = {xjc; +--- +x,¢, | x; in R}

using Definition 2.5. Hence im Ty is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image
of a linear transformation. Here is an example.

Example 7.2.3

Define a transformation P : M,,, — M, by P(A) = A — AT for all A in M,,,. Show that P is
linear and that:

a. Ker P consists of all symmetric matrices.

b. im P consists of all skew-symmetric matrices.

Solution. The verification that P is linear is left to the reader. To prove part (a), note that
a matrix A lies in ker P just when 0 = P(A) = A — AT, and this occurs if and only if

A =AT —that is, A is symmetric. Turning to part (b), the space im P consists of all matrices
P(A), A in M,,,. Every such matrix is skew-symmetric because

PAT =(A-AT)T =AT —A=—P(A)
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On the other hand, if S is skew-symmetric (that is, S = —S), then S lies in im P. In fact,

P[is]=L1s—[1s]" = L(s—sT) = L(S+8)=5

N —

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations

Let T :V — W be a linear transformation.

1. T is said to be onto if i mT =W.

2. T is said to be one-to-one if T(v) = T(vy) implies v = vj.

A vector w in W is said to be hit by T if w=T(v) for some v in V. Then T is onto if every
vector in W is hit at least once, and T is one-to-one if no element of W gets hit twice. Clearly the
onto transformations 7' are those for which im 7 =W is as large a subspace of W as possible. By
contrast, Theorem 7.2.2 shows that the one-to-one transformations T are the ones with ker T as
small a subspace of V as possible.

Theorem 7.2.2

If T :V — W is a linear transformation, then T is one-to-one if and only if ker T = {0}.

Proof. If T is one-to-one, let v be any vector in ker T. Then T(v) =0, so T(v) =T(0). Hence
v =0 because T is one-to-one. Hence ker T = {0}.

Conversely, assume that ker 7 = {0} and let T(v) = T(vy) with v and v; in V. Then
T(v—vy)=T(v)—T(vi)=0,s0 v—vy lies in ker T ={0}. This means that v—v; =0, so v=vy,
proving that T is one-to-one. []

Example 7.2.4

The identity transformation 1y : V — V is both one-to-one and onto for any vector space V.

Example 7.2.5

Consider the linear transformations

S:R>—R? given by S(x, y, 2) = (x+y, x—y)
T:R*> - R3 given by T(x, y) = (x+y, x—y, x)

Show that T is one-to-one but not onto, whereas § is onto but not one-to-one.




7.2. Kernel and Image of a Linear Transformation = 377

Solution. The verification that they are linear is omitted. T is one-to-one because
ker T ={(x, y) [x+y=x—y=x=0}={(0, 0)}

However, it is not onto. For example (0, 0, 1) does not lie in im 7 because if

(0, 0, 1) = (x+y, x—y, x) for some x and y, then x+y=0=x—y and x=1, an
impossibility. Turning to S, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in
ker S. But every element (s, ¢) in R? lies in im S because (s, ) = (x+y, x—y) = S(x, y, z)
for some x, y, and z (in fact, x = 1(s+17), y= 3(s—1), and z=0). Hence S is onto.

Example 7.2.6

Let U be an invertible m x m matrix and define
T:My, —»M,, by T(X)=UX forall X in M,
Show that T is a linear transformation that is both one-to-one and onto.

Solution. The verification that T is linear is left to the reader. To see that T is one-to-one,
let 7(X) =0. Then UX = 0, so left-multiplication by U~! gives X = 0. Hence ker T = {0},
so T is one-to-one. Finally, if ¥ is any member of M,,,, then U~'Y lies in M,,, too, and
T(U-'Y)=U(U~'Y) =Y. This shows that T is onto.

The linear transformations R” — R™ all have the form Ty for some m x n matrix A (Theo-
rem 2.6.2). The next theorem gives conditions under which they are onto or one-to-one. Note the
connection with Theorem 5.4.3 and Theorem 5.4.4.

Theorem 7.2.3

Let A be an m X n matrix, and let Ty : R" — R™ be the linear transformation induced by A,
that is Tp(x) = Ax for all columns x in R”.

1. Ty is onto if and only if rank A = m.

2. Ty is one-to-one if and only if rank A = n.

Proof.

1. We have that im T is the column space of A (see Example 7.2.2), so Ty is onto if and only
if the column space of A is R”. Because the rank of A is the dimension of the column space,
this holds if and only if rank A = m.

2. ker Ty = {x in R" | Ax = 0}, so (using Theorem 7.2.2) Ty is one-to-one if and only if Ax =0
implies x = 0. This is equivalent to rank A = n by Theorem 5.4.3. ]
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The Dimension Theorem

Let A denote an m x n matrix of rank r and let Ty : R* — R™ denote the corresponding matrix
transformation given by T (x) = Ax for all columns x in R”. It follows from Example 7.2.1 and Ex-
ample 7.2.2 that im Ty = col A, so dim (im 7) = dim (col A) =r. On the other hand Theorem 5.4.2
shows that dim (ker T4 ) = dim (null A) = n — r. Combining these we see that

dim (im Ty ) + dim (ker Ty) =n for every m x n matrix A

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem

Let T :V — W be any linear transformation and assume that ker T and im T are both finite
dimensional. Then V is also finite dimensional and

dim V = dim (ker 7') + dim (im 7')

In other words, dim V = nullity (T') + rank (7).

Proof. Every vector in im T =T (V) has the form 7 (v) for some vin V. Hence let {T(e1), T(e2), ..., T(e,)}

be a basis of im T, where the e; lie in V. Let {f}, f5, ..., fi} be any basis of ker T. Then
dim (im 7') = r and dim (ker T') =k, so it suffices to show that B={ey, ..., e,, fi, ..., fi} is a basis
of V.

1. B spans V. If v lies in V, then T(v) lies in im V, so
T(v)=nT(e))+nT(e2)+---+1T(e,) finR

This implies that v —tje; —thep —--- —t,e, lies in ker T and so is a linear combination of
fi, ..., fi. Hence v is a linear combination of the vectors in B.

2. B is linearly independent. Suppose that #; and s; in R satisfy
nei+---+te +sifi+-- +5fp =0 (7.1)

Applying T gives t;T(ey)+---+1,T(e,) = 0 (because T(f;) =0 for each i). Hence the inde-
pendence of {T(e;), ..., T(e,)} yields t; =--- =1, = 0. But then (7.1) becomes

sifi+--+s5 =0

so s = -+ = s = 0 by the independence of {fj, ..., fi}. This proves that B is linearly
independent.

]

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact,
verifying that ker T and im T are both finite dimensional is often an important way to prove that
V is finite dimensional.
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Note further that r4k = n in the proof so, after relabelling, we end up with a basis

B:{el9 €, ..., €, €py1, ..., en}

of V with the property that {e,+1, ..., e,} is a basis of ker T and {T'(e;), ..., T(e,)} is a basis of
im 7. In fact, if V is known in advance to be finite dimensional, then any basis {€,+1, ..., €,} of
ker T can be extended to a basis {ej, €y, ..., €, €41, ..., €,} of V by Theorem 6.4.1. Moreover, it
turns out that, no matter how this is done, the vectors {T(ey), ..., T(e,)} will be a basis of im T.
This result is useful, and we record it for reference. The proof is much like that of Theorem 7.2.4
and is left as Exercise 7.2.26.

Theorem 7.2.5

Let T :V — W be a linear transformation, and let {ey, ..., €, €511, ..., €,} be a basis of V
such that {€,+1, ..., e,} is a basis of ker T. Then {T(e;), ..., T(er)} is a basis of im T,
and hence r = rank T.

The dimension theorem is one of the most useful results in all of linear algebra. It shows that
if either dim (ker 7)) or dim (im T') can be found, then the other is automatically known. In many
cases it is easier to compute one than the other, so the theorem is a real asset. The rest of this
section is devoted to illustrations of this fact. The next example uses the dimension theorem to
give a different proof of the first part of Theorem 5.4.2.

Example 7.2.7

Let A be an m x n matrix of rank r. Show that the space null A of all solutions of the system
Ax = 0 of m homogeneous equations in n variables has dimension n—r.

Solution. The space in question is just ker Ty, where Ty : R" — R™ is defined by Ty (x) = Ax
for all columns x in R”. But dim (im 7 ) = rank Ty = rank A = r by Example 7.2.2, so
dim (ker Ty ) = n — r by the dimension theorem.

Example 7.2.8

If T:V — W is a linear transformation where V is finite dimensional, then
dim(ker7) < dimV and dim(im7)<dimV

Indeed, dim V = dim (ker 7') + dim (im 7') by Theorem 7.2.4. Of course, the first inequality
also follows because ker T is a subspace of V.

Example 7.2.9

Let D: P, — P,_; be the differentiation map defined by D [p(x)] = p/(x). Compute ker D
and hence conclude that D is onto.
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Solution. Because p/(x) =0 means p(x) is constant, we have dim (ker D) = 1. Since
dim P, =n+1, the dimension theorem gives

dim (im D) = (n+1) — dim (ker D) = n = dim (P,_;)

This implies that im D =P,_;, so D is onto.

Of course it is not difficult to verify directly that each polynomial g(x) in P, is the derivative
of some polynomial in P, (simply integrate g(x)!), so the dimension theorem is not needed in this
case. However, in some situations it is difficult to see directly that a linear transformation is onto,
and the method used in Example 7.2.9 may be by far the easiest way to prove it. Here is another
illustration.

Example 7.2.10

Given a in R, the evaluation map E, : P, — R is given by E, [p(x)] = p(a). Show that E, is
linear and onto, and hence conclude that {(x—a), (x—a)?, ..., (x—a)"} is a basis of ker E,,
the subspace of all polynomials p(x) for which p(a) = 0.

Solution. E, is linear by Example 7.1.3; the verification that it is onto is left to the reader.
Hence dim (im E,) = dim (R) =1, so dim (ker E,) = (n+ 1) — 1 = n by the dimension
theorem. Now each of the n polynomials (x —a), (x—a)?, ..., (x—a)" clearly lies in ker E,,
and they are linearly independent (they have distinct degrees). Hence they are a basis
because dim (ker E,;) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any m x n matrix, show that rank A = rank ATA = rank AAT .

Solution. It suffices to show that rank A = rank ATA (the rest follows by replacing A with
AT). Write B=ATA, and consider the associated matrix transformations

T,:R*" - R"™ and Tp:R"—R"
The dimension theorem and Example 7.2.2 give

rank A = rank Ty = dim (im T) = n— dim (ker 7j)
rank B = rank 7 = dim (im 7) = n — dim (ker 7p)

so it suffices to show that ker Ty = ker T5. Now Ax = 0 implies that Bx = ATAx =0, so
ker Ty is contained in ker Tg. On the other hand, if Bx = 0, then ATAx =0, so

|Ax|)? = (Ax)T (Ax) = x"ATAx =xT0=0

This implies that Ax = 0, so ker Tp is contained in ker T4.
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Exercises for 7.2

Exercise 7.2.1 For each matrix A, find a basis for i. T:Mp — Mp; T(X)=XA—AX, where

the kernel and image of T, and find the rank and A — 0 1
nullity of Ty. |10
F 1 1 T 1 -1 3 j. T 1 l\/fzz — Mpy; T(X) = XA, where A =
a) |3 1 0 2 by |1 0 3 1 { 0 0 }
1 -3 20 11 -4 2
[ 1 2 —1 [ 2 1 0
3 1 2 d I —1 3 5
ls _1 s N b. {x*—x}; {(1, 0), (0, 1)}
[0 2 =2 L0 3 -6 d. {(0, 0, }; {(1, 1, 0, 0), (0, 0, 1, 1)}
1 0 0 1 0 0
Hlo A ool [V elpo
b. ] h. {(1,0,0,...,0, 1), (0, 1,0, ..., 0, —1),
-3 1) .., (0,0,0, ..., 1, =D} {1}
7 1 1 0
BE ol 01, L ei2,2 : 0 1 0 0]
1 —1 PUool o1 ]f
0 -1 |
- 11 0 0
| (T 1 0 00|11
d. 2 ; (1) , _i ;2,1 Exercise 7.2.3 Let P:V >R and Q:V — R be
1 | 5 linear transformations, where V is a vector space.
- Define T :V — R? by T(v) = (P(v), Q(Vv)).
Exercise 7.2.2 In each case, (i) find a basis of a. Show that T is a linear transformation.
ker T, and (ii) find a basis of im 7. You may assume b. Show that ker T = ker PN ker O, the set of vec-
that T is linear. tors in both ker P and ker Q.
a. T:Py —R? T(a+bx+cx®) = (a, b)
b. T:Py —R* T(p(x)) = (p(0), p(1))
b. T(v) =0 = (0, 0) if and only if P(v) =0
c. T:R3 =R} T(x, 5, 2)=(x+y, x+y, 0) and Q(v) = 0; that is, if and only if v is in
ker PN ker Q.
d T:RP=RY T(x, y, 2)=(x, x, 3, ¥)
Exercise 7.2.4 In each case, find a basis
o. T:M22—>M22;T[a b _ [ a+b b+c] B=1{e, ..., e, €1, ..., e} of V such that
¢ d ctd d+a {€r+1, .-, €,} is a basis of ker T, and verify The-
b orem 7.2.5.
a
£ T:Mn—R; T[ d]_a+d a. T:R = R% T(x, y, 2) = (x—y+2z x+y—
z, 2x+z, 2y —32)
g T:P,—R; T(ro+rx+--+rx")=r,
b. T:R* =R T(x, v, 2) = (x+y+z, 2x—y+
h. T:R*" = R; T(ry, r2y ..., 1) =r1+r+-+r, 3z, z— 3y, 3x+4z)
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b. kerT = span{(—4, 1, 3)} B =
{(1, 0, 0), (0, 1, 0), (-4, 1, 3)}, imT =
span{(1, 2, 0, 3), (1, —1, =3, 0)}

Exercise 7.2.5 Show that every matrix X in M,
has the form X = AT —2A for some matrix A in M,,,.
[Hint: The dimension theorem.]

Exercise 7.2.6 In each case either prove the
statement or give an example in which it is false.
Throughout, let T :V — W be a linear transforma-
tion where V and W are finite dimensional.

a. f V=W, then kerT C imT.

b. If dimV =5, dim W =3, and dim (ker T') = 2,
then T is onto.

c. If dimV =5 and dim W =4, then ker T # {0}.
d. If ker T =V, then W = {0}.

e. If W ={0}, then ker T =V.

f. fW=V,and imT C ker T, then T =0.

g. If {e1, ey, e3} is a basis of V and
T(e;)=0=T(ey), then dim(im7T) < 1.

h. If dim(ker7T) < dimW, then dimW >

% dim V.
i. If T is one-to-one, then dimV < dim W.
j. If dimV < dim W, then T is one-to-one.
k. If T is onto, then dimV > dim W.
l. If dimV > dim W, then T is onto.

m. If {T(vy), ..., T(vg)} is independent, then
{v1, ..., vi} is independent.

n. If {vi, ..., then

{T(V]), -

v} spans V,
, T(vi)} spans W.

b. Yes. dim(im7) =5 — dim(ker7) = 3, so
m7T =W as dim W = 3.

d. No. T=0:R? > R?

f. No. T:R>—=R% T(x, y)=(y, 0). Then
kerT =imT
h. Yes. dimV = dim(kerT) + dim(im7) <

dmW+dmW =2dim W

j- No.
(y. 0).

1. No. Same example as (j).

Consider T : R?> — R? with T(x, y) =

n. No. Define T :R?> — R? by T(x, y) = (x, 0).
If vi = (1, 0) and v, = (0, 1), then R?> =
span{vi, v2} but R? # span{T(v1), T(v2)}.

Exercise 7.2.7 Show that linear independence is
preserved by one-to-one transformations and that
spanning sets are preserved by onto transformations.
More precisely, if T : V — W is a linear transforma-
tion, show that:

a. If T is one-to-one and {vy, ..., v,} is inde-
pendent in V, then {T(vy), ..., T(vy)} is in-
dependent in W.

b. If T is onto and V = span{vy, ...
W = span{T(vy), ..., T(v,)}.

, Vp}, then

b. Given w in W, let w=T(v), v in V, and
write v=r;vi+---+r,v,. Then w=T(v) =
nT(vi)+-+rT(vy).

Exercise 7.2.8 Given {vj, ..., v,} in a vec-
tor space V, define T : R" =V by T(ry, ..., ry) =
rivi+---+r,v,. Show that T is linear, and that:

a. T is one-to-one if and only if {vy, ..., v,} is
independent.

b. T is onto if and only if V = span{vy, ..., v,}.

b. im T ={Y,;rvi|ri in R} = span{v;}.
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Exercise 7.2.9 Let T:V — V be a linear trans-
formation where V is finite dimensional. Show that
exactly one of (i) and (ii) holds: (i) T(v) =0 for
some v # 0 in V; (ii) T(x) = v has a solution x in V
for every v in V.

Exercise 7.2.10 Let T :M,,, — R denote the trace
map: T(A)=trA for all A in M,,. Show that

dim (ker T) = n®> — 1.
T is linear and onto. Hence 1 = dimR =
dim(imT) = dim(M,,) — dim(ker7) = n?> —
dim (ker 7).

Exercise 7.2.11 Show that the following are equiv-
alent for a linear transformation 7:V — W.

1. kerT =V
3. T=0

2. im T ={0}

Exercise 7.2.12 Let A and B be mxn and k xn
matrices, respectively. Assume that Ax = 0 im-
plies Bx = 0 for every n-column x. Show that
rank A > rank B.

[Hint: Theorem 7.2.4.]
The condition means ker(7Ty) C ker(7p), so
dim [ker (74)] < dim [ker (73)]. Then Theorem 7.2.4
gives dim [im (74 )] > dim [im (73)]; that is, rank A >
rank B.

Exercise 7.2.13 Let A be an m x n matrix of
rank r. Thinking of R" as rows, define V = {x in
R™ | xA = 0}. Show that dimV =m—r.

Exercise 7.2.14 Consider
a b
v={lt 7]

a. Consider S: My, — R with S [ ccl

a—l—c:b+d}

b
d
¢—b—d. Show that S is linear and onto and
that V is a subspace of Mj;. Compute dim V.

| —as

b. Consider 7T :V — R with T [ Ccl Z

Show that T is linear and onto, and use this
information to compute dim (ker T').

] =a+c.

Exercise 7.2.15 Define T: P, — R by T [p(x)] =
the sum of all the coefficients of p(x).

a. Use the dimension theorem to show that
dim (ker T) = n.
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b. Conclude that {x—1, x> —1, ..
basis of ker T.

L X'—1}isa

b. B={x—1, ..., x"—1} is independent (distinct
degrees) and contained in ker 7. Hence B is a
basis of ker T by (a).

Exercise 7.2.16 Use the dimension theorem to
prove Theorem 1.3.1: If A is an m X n matrix with
m < n, the system Ax = 0 of m homogeneous equa-
tions in n variables always has a nontrivial solution.

Exercise 7.2.17 Let B be an n X n matrix, and con-
sider the subspaces U ={A | A in M,,,, AB=0} and
V ={AB|A in M,;,,}. Show that dim U + dimV =
mn.

Exercise 7.2.18 Let U and V denote, respec-
tively, the spaces of even and odd polynomials in P,,.
Show that dim U + dimV =n+1. [Hint: Consider
T :P, — P, where T [p(x)] = p(x) — p(—x).]

Exercise 7.2.19 Show that every polynomial f(x)
in P,_; can be written as f(x) = p(x+ 1) — p(x)
for some polynomial p(x) in P,. [Hint: Define
T:P,— P, by Tp(x)]=px+1)—px)]

Exercise 7.2.20 Let U and V denote the spaces of
symmetric and skew-symmetric n X n matrices. Show
that dim U + dim V = n?.
Define T : M,,, — M,,, by T(A) = A — AT for all A
in M,,,. Then kerT =U and imT =V by Ex-
ample 7.2.3, so the dimension theorem gives n’> =

dim M,,, = dim (U) + dim (V).

Exercise 7.2.21 Assume that B in M,,, satisfies
BF =0 for some k> 1. Show that every matrix in
M,,, has the form BA —A for some A in M,,,. [Hint:
Show that T : M,,, — M,,, is linear and one-to-one
where

T(A) = BA—A for each A.]

Exercise 7.2.22 Fix a column y # 0 in R"” and let
U={A in M,,, | Ay = 0}. Show that dimU =
nn—1).
Define T : M,,, - R" by T(A) = Ay for all A in
M,,,. Then T is linear with kerT = U, so it
is enough to show that 7T is onto (then dimU =
n?> — dim(imT) = n> —n). We have T(0) = 0.
Let y=[y » = ] #0mR. If y #0
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let ¢t =y, 'y, and let ¢; =0 if j#k If A=
[ @ ¢y |, then T(A) = Ay = yjci + -+ +
YiCk + - +ync, =y. This shows that T is onto, as
required.

Exercise 7.2.23 If B in M, has rank r, let U = {A
in M,,, | BA=0} and W ={BA | A in M,;,}. Show that
dimU =n(n—r) and dim W =nr. [Hint: Show that
U consists of all matrices A whose columns are in the
null space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let T :V —V be a linear transfor-
mation where dim V =n. If ker TNim 7 = {0}, show
that every vector v in V can be written v=u+w for
some u in ker 7 and w in im 7. [Hint: Choose bases
BC ker T and D C im T, and use Exercise 6.3.33.]

Exercise 7.2.25 Let T :R" — R” be a linear opera-
tor of rank 1, where R” is written as rows. Show that

there exist numbers ay, as, ..., a, and by, b, ..., b,
such that T(X) = XA for all rows X in R”", where

aiby aib aiby,
arby axby a>b,,
a,by a,by anb,
[Hint: im T =Rw for w= (by, ..., b,) in R" ]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let T :V — R be a nonzero linear
transformation, where dimV = n. Show that there
is a basis {ej, ..., e,} of V so that T(rje; + re;+
et rpey) =r1.

Exercise 7.2.28 Let f # 0 be a fixed polynomial
of degree m > 1. If p is any polynomial, recall that
(pof)(x)=p[f(x)]. Define Ty : By = Pyim by

Ty(p) =pof.

a. Show that Ty is linear.

b. Show that Ty is one-to-one.

Exercise 7.2.29 Let U be a subspace of a finite
dimensional vector space V.

a. Show that U = ker T for some linear operator
T:V—=V.

b. Show that U = im S for some linear operator
S:V — V. [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

b. By Lemma 6.4.2, let {uj, ..., wy, ..., u,}
be a basis of V where {uy, ..., u,} is a ba-
sis of U. By Theorem 7.1.3 there is a linear
transformation S:V — V such that S(u;) = w;
for 1 <i<m, and S(u;) =0 if i > m. Because
each w; is in im S, U C im S. But if S(v) is in
im S, write v=riu;+ - +rpuu+---+ru,.
Then S(v) = riS(ur) + -+ + ruS(uy,) = riu; +
o4+, isin U. So im S C U.

Exercise 7.2.30 Let V and W be finite dimensional
vector spaces.

a. Show that dim W < dim V if and only if there
exists an onto linear transformation 7 :V —
W. [Hint: Theorem 6.4.1 and Theorem 7.1.3.]

b. Show that dim W > dim V if and only if there
exists a one-to-one linear transformation T :
V — W. [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

Exercise 7.2.31 Let A and B be n x n matrices, and
assume that AXB =0, X € M,,,, implies X =0. Show
that A and B are both invertible. [Hint: Dimension
Theorem.|
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