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7.2 Kernel and Image of a Linear Transformation

This section is devoted to two important subspaces associated with a linear transformation T : V →
W .

Definition 7.2 Kernel and Image of a Linear Transformation

The kernel of T (denoted ker T ) and the image of T (denoted im T or T (V )) are defined by

ker T = {v in V | T (v) = 0}
im T = {T (v) | v in V}= T (V )

ker T

T

V

W
0

im TV W
T

The kernel of T is often called the nullspace of T because it consists
of all vectors v in V satisfying the condition that T (v) = 0. The image
of T is often called the range of T and consists of all vectors w in W
of the form w = T (v) for some v in V . These subspaces are depicted
in the diagrams.

Example 7.2.1

Let TA : Rn → Rm be the linear transformation induced by the
m×n matrix A, that is TA(x) = Ax for all columns x in Rn.
Then

ker TA = {x | Ax = 0}= null A and
im TA = {Ax | x in Rn}= im A

Hence the following theorem extends Example 5.1.2.

Theorem 7.2.1
Let T : V →W be a linear transformation.

1. ker T is a subspace of V .

2. im T is a subspace of W .

Proof. The fact that T (0) = 0 shows that ker T and im T contain the zero vector of V and W
respectively.

1. If v and v1 lie in ker T , then T (v) = 0 = T (v1), so

T (v+v1) = T (v)+T (v1) = 0+0 = 0
T (rv) = rT (v) = r0 = 0 for all r in R
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Hence v+v1 and rv lie in ker T (they satisfy the required condition), so ker T is a subspace
of V by the subspace test (Theorem 6.2.1).

2. If w and w1 lie in im T , write w = T (v) and w1 = T (v1) where v, v1 ∈V . Then

w+w1 = T (v)+T (v1) = T (v+v1)

rw = rT (v) = T (rv) for all r in R

Hence w+w1 and rw both lie in im T (they have the required form), so im T is a subspace
of W .

Given a linear transformation T : V →W :

dim (ker T ) is called the nullity of T and denoted as nullity (T )
dim ( im T ) is called the rank of T and denoted as rank (T )

The rank of a matrix A was defined earlier to be the dimension of col A, the column space of A.
The two usages of the word rank are consistent in the following sense. Recall the definition of TA
in Example 7.2.1.

Example 7.2.2

Given an m×n matrix A, show that im TA = col A, so rank TA = rank A.

Solution. Write A =
[

c1 · · · cn
]

in terms of its columns. Then

im TA = {Ax | x in Rn}= {x1c1 + · · ·+ xncn | xi in R}

using Definition 2.5. Hence im TA is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the kernel or image
of a linear transformation. Here is an example.

Example 7.2.3

Define a transformation P : Mnn → Mnn by P(A) = A−AT for all A in Mnn. Show that P is
linear and that:

a. ker P consists of all symmetric matrices.

b. im P consists of all skew-symmetric matrices.

Solution. The verification that P is linear is left to the reader. To prove part (a), note that
a matrix A lies in ker P just when 0 = P(A) = A−AT , and this occurs if and only if
A = AT —that is, A is symmetric. Turning to part (b), the space im P consists of all matrices
P(A), A in Mnn. Every such matrix is skew-symmetric because

P(A)T = (A−AT )T = AT −A =−P(A)
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On the other hand, if S is skew-symmetric (that is, ST =−S), then S lies in im P. In fact,

P
[1

2S
]
= 1

2S−
[1

2S
]T

= 1
2(S−ST ) = 1

2(S+S) = S

One-to-One and Onto Transformations

Definition 7.3 One-to-one and Onto Linear Transformations
Let T : V →W be a linear transformation.

1. T is said to be onto if im T =W .

2. T is said to be one-to-one if T (v) = T (v1) implies v = v1.

A vector w in W is said to be hit by T if w = T (v) for some v in V . Then T is onto if every
vector in W is hit at least once, and T is one-to-one if no element of W gets hit twice. Clearly the
onto transformations T are those for which im T =W is as large a subspace of W as possible. By
contrast, Theorem 7.2.2 shows that the one-to-one transformations T are the ones with ker T as
small a subspace of V as possible.

Theorem 7.2.2
If T : V →W is a linear transformation, then T is one-to-one if and only if ker T = {0}.

Proof. If T is one-to-one, let v be any vector in ker T . Then T (v) = 0, so T (v) = T (0). Hence
v = 0 because T is one-to-one. Hence ker T = {0}.

Conversely, assume that ker T = {0} and let T (v) = T (v1) with v and v1 in V . Then
T (v−v1) = T (v)−T (v1) = 0, so v−v1 lies in ker T = {0}. This means that v−v1 = 0, so v = v1,
proving that T is one-to-one.

Example 7.2.4

The identity transformation 1V : V →V is both one-to-one and onto for any vector space V .

Example 7.2.5

Consider the linear transformations

S : R3 → R2 given by S(x, y, z) = (x+ y, x− y)

T : R2 → R3 given by T (x, y) = (x+ y, x− y, x)

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.
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Solution. The verification that they are linear is omitted. T is one-to-one because

ker T = {(x, y) | x+ y = x− y = x = 0}= {(0, 0)}

However, it is not onto. For example (0, 0, 1) does not lie in im T because if
(0, 0, 1) = (x+ y, x− y, x) for some x and y, then x+ y = 0 = x− y and x = 1, an
impossibility. Turning to S, it is not one-to-one by Theorem 7.2.2 because (0, 0, 1) lies in
ker S. But every element (s, t) in R2 lies in im S because (s, t) = (x+ y, x− y) = S(x, y, z)
for some x, y, and z (in fact, x = 1

2(s+ t), y = 1
2(s− t), and z = 0). Hence S is onto.

Example 7.2.6

Let U be an invertible m×m matrix and define

T : Mmn → Mmn by T (X) =UX for all X in Mmn

Show that T is a linear transformation that is both one-to-one and onto.

Solution. The verification that T is linear is left to the reader. To see that T is one-to-one,
let T (X) = 0. Then UX = 0, so left-multiplication by U−1 gives X = 0. Hence ker T = {0},
so T is one-to-one. Finally, if Y is any member of Mmn, then U−1Y lies in Mmn too, and
T (U−1Y ) =U(U−1Y ) = Y . This shows that T is onto.

The linear transformations Rn → Rm all have the form TA for some m× n matrix A (Theo-
rem 2.6.2). The next theorem gives conditions under which they are onto or one-to-one. Note the
connection with Theorem 5.4.3 and Theorem 5.4.4.

Theorem 7.2.3
Let A be an m×n matrix, and let TA : Rn → Rm be the linear transformation induced by A,
that is TA(x) = Ax for all columns x in Rn.

1. TA is onto if and only if rank A = m.

2. TA is one-to-one if and only if rank A = n.

Proof.

1. We have that im TA is the column space of A (see Example 7.2.2), so TA is onto if and only
if the column space of A is Rm. Because the rank of A is the dimension of the column space,
this holds if and only if rank A = m.

2. ker TA = {x in Rn | Ax = 0}, so (using Theorem 7.2.2) TA is one-to-one if and only if Ax = 0
implies x = 0. This is equivalent to rank A = n by Theorem 5.4.3.
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The Dimension Theorem

Let A denote an m× n matrix of rank r and let TA : Rn → Rm denote the corresponding matrix
transformation given by TA(x) = Ax for all columns x in Rn. It follows from Example 7.2.1 and Ex-
ample 7.2.2 that im TA = col A, so dim ( im TA) = dim (col A) = r. On the other hand Theorem 5.4.2
shows that dim (ker TA) = dim (null A) = n− r. Combining these we see that

dim ( im TA)+ dim (ker TA) = n for every m×n matrix A

The main result of this section is a deep generalization of this observation.

Theorem 7.2.4: Dimension Theorem
Let T : V →W be any linear transformation and assume that ker T and im T are both finite
dimensional. Then V is also finite dimensional and

dim V = dim (ker T )+ dim ( im T )

In other words, dim V = nullity (T )+ rank (T ).

Proof. Every vector in im T =T (V ) has the form T (v) for some v in V . Hence let {T (e1), T (e2), . . . , T (er)}
be a basis of im T , where the ei lie in V . Let {f1, f2, . . . , fk} be any basis of ker T . Then
dim ( im T ) = r and dim (ker T ) = k, so it suffices to show that B = {e1, . . . , er, f1, . . . , fk} is a basis
of V .

1. B spans V . If v lies in V , then T (v) lies in im V , so

T (v) = t1T (e1)+ t2T (e2)+ · · ·+ trT (er) ti in R

This implies that v− t1e1 − t2e2 − ·· · − trer lies in ker T and so is a linear combination of
f1, . . . , fk. Hence v is a linear combination of the vectors in B.

2. B is linearly independent. Suppose that ti and s j in R satisfy

t1e1 + · · ·+ trer + s1f1 + · · ·+ skfk = 0 (7.1)

Applying T gives t1T (e1)+ · · ·+ trT (er) = 0 (because T (fi) = 0 for each i). Hence the inde-
pendence of {T (e1), . . . , T (er)} yields t1 = · · ·= tr = 0. But then (7.1) becomes

s1f1 + · · ·+ skfk = 0

so s1 = · · · = sk = 0 by the independence of {f1, . . . , fk}. This proves that B is linearly
independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 7.2.4. In fact,
verifying that ker T and im T are both finite dimensional is often an important way to prove that
V is finite dimensional.
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Note further that r+ k = n in the proof so, after relabelling, we end up with a basis

B = {e1, e2, . . . , er, er+1, . . . , en}

of V with the property that {er+1, . . . , en} is a basis of ker T and {T (e1), . . . , T (er)} is a basis of
im T . In fact, if V is known in advance to be finite dimensional, then any basis {er+1, . . . , en} of
ker T can be extended to a basis {e1, e2, . . . , er, er+1, . . . , en} of V by Theorem 6.4.1. Moreover, it
turns out that, no matter how this is done, the vectors {T (e1), . . . , T (er)} will be a basis of im T .
This result is useful, and we record it for reference. The proof is much like that of Theorem 7.2.4
and is left as Exercise 7.2.26.

Theorem 7.2.5
Let T : V →W be a linear transformation, and let {e1, . . . , er, er+1, . . . , en} be a basis of V
such that {er+1, . . . , en} is a basis of ker T . Then {T (e1), . . . , T (er)} is a basis of im T ,
and hence r = rank T .

The dimension theorem is one of the most useful results in all of linear algebra. It shows that
if either dim (ker T ) or dim ( im T ) can be found, then the other is automatically known. In many
cases it is easier to compute one than the other, so the theorem is a real asset. The rest of this
section is devoted to illustrations of this fact. The next example uses the dimension theorem to
give a different proof of the first part of Theorem 5.4.2.

Example 7.2.7

Let A be an m×n matrix of rank r. Show that the space null A of all solutions of the system
Ax = 0 of m homogeneous equations in n variables has dimension n− r.

Solution. The space in question is just ker TA, where TA : Rn →Rm is defined by TA(x) = Ax
for all columns x in Rn. But dim ( im TA) = rank TA = rank A = r by Example 7.2.2, so
dim (ker TA) = n− r by the dimension theorem.

Example 7.2.8

If T : V →W is a linear transformation where V is finite dimensional, then

dim (ker T )≤ dim V and dim ( im T )≤ dim V

Indeed, dim V = dim (ker T )+ dim ( im T ) by Theorem 7.2.4. Of course, the first inequality
also follows because ker T is a subspace of V .

Example 7.2.9

Let D : Pn → Pn−1 be the differentiation map defined by D [p(x)] = p′(x). Compute ker D
and hence conclude that D is onto.



380 CONTENTS

Solution. Because p′(x) = 0 means p(x) is constant, we have dim (ker D) = 1. Since
dim Pn = n+1, the dimension theorem gives

dim ( im D) = (n+1)− dim (ker D) = n = dim (Pn−1)

This implies that im D = Pn−1, so D is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in Pn−1 is the derivative
of some polynomial in Pn (simply integrate q(x)!), so the dimension theorem is not needed in this
case. However, in some situations it is difficult to see directly that a linear transformation is onto,
and the method used in Example 7.2.9 may be by far the easiest way to prove it. Here is another
illustration.

Example 7.2.10

Given a in R, the evaluation map Ea : Pn → R is given by Ea [p(x)] = p(a). Show that Ea is
linear and onto, and hence conclude that {(x−a), (x−a)2, . . . , (x−a)n} is a basis of ker Ea,
the subspace of all polynomials p(x) for which p(a) = 0.

Solution. Ea is linear by Example 7.1.3; the verification that it is onto is left to the reader.
Hence dim ( im Ea) = dim (R) = 1, so dim (ker Ea) = (n+1)−1 = n by the dimension
theorem. Now each of the n polynomials (x−a), (x−a)2, . . . , (x−a)n clearly lies in ker Ea,
and they are linearly independent (they have distinct degrees). Hence they are a basis
because dim (ker Ea) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

Example 7.2.11

If A is any m×n matrix, show that rank A = rank AT A = rank AAT .

Solution. It suffices to show that rank A = rank AT A (the rest follows by replacing A with
AT ). Write B = AT A, and consider the associated matrix transformations

TA : Rn → Rm and TB : Rn → Rn

The dimension theorem and Example 7.2.2 give

rank A = rank TA = dim ( im TA) = n− dim (ker TA)

rank B = rank TB = dim ( im TB) = n− dim (ker TB)

so it suffices to show that ker TA = ker TB. Now Ax = 0 implies that Bx = AT Ax = 0, so
ker TA is contained in ker TB. On the other hand, if Bx = 0, then AT Ax = 0, so

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT 0 = 0

This implies that Ax = 0, so ker TB is contained in ker TA.
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Exercises for 7.2

Exercise 7.2.1 For each matrix A, find a basis for
the kernel and image of TA, and find the rank and
nullity of TA. 1 2 −1 1

3 1 0 2
1 −3 2 0

a)

 2 1 −1 3
1 0 3 1
1 1 −4 2

b)


1 2 −1
3 1 2
4 −1 5
0 2 −2

c)


2 1 0
1 −1 3
1 2 −3
0 3 −6

d)

b.


−3
7
1
0

 ,


1
1
0

−1


;


 1

0
1

 ,

 0
1

−1

; 2, 2

d.


 −1

2
1

;




1
0
1
1

 ,


0
1

−1
−2


; 2, 1

Exercise 7.2.2 In each case, (i) find a basis of
ker T , and (ii) find a basis of im T . You may assume
that T is linear.

a. T : P2 → R2; T (a+bx+ cx2) = (a, b)

b. T : P2 → R2; T (p(x)) = (p(0), p(1))

c. T : R3 → R3; T (x, y, z) = (x+ y, x+ y, 0)

d. T : R3 → R4; T (x, y, z) = (x, x, y, y)

e. T : M22 →M22; T
[

a b
c d

]
=

[
a+b b+ c
c+d d +a

]

f. T : M22 → R; T
[

a b
c d

]
= a+d

g. T : Pn → R; T (r0 + r1x+ · · ·+ rnxn) = rn

h. T : Rn →R; T (r1, r2, . . . , rn) = r1+ r2+ · · ·+ rn

i. T : M22 → M22; T (X) = XA−AX , where

A =

[
0 1
1 0

]
j. T : M22 → M22; T (X) = XA, where A =[

1 1
0 0

]

b. {x2 − x}; {(1, 0), (0, 1)}

d. {(0, 0, 1)}; {(1, 1, 0, 0), (0, 0, 1, 1)}

f.
{[

1 0
0 −1

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]}
; {1}

h. {(1, 0, 0, . . . , 0, −1), (0, 1, 0, . . . , 0, −1),
. . . , (0, 0, 0, . . . , 1, −1)}; {1}

j.
{[

0 1
0 0

]
,
[

0 0
0 1

]}
;{[

1 1
0 0

]
,
[

0 0
1 1

]}
Exercise 7.2.3 Let P : V → R and Q : V → R be
linear transformations, where V is a vector space.
Define T : V → R2 by T (v) = (P(v), Q(v)).

a. Show that T is a linear transformation.

b. Show that ker T = ker P∩ ker Q, the set of vec-
tors in both ker P and ker Q.

b. T (v) = 0 = (0, 0) if and only if P(v) = 0
and Q(v) = 0; that is, if and only if v is in
ker P∩ ker Q.

Exercise 7.2.4 In each case, find a basis
B = {e1, . . . , er, er+1, . . . , en} of V such that
{er+1, . . . , en} is a basis of ker T , and verify The-
orem 7.2.5.

a. T : R3 → R4; T (x, y, z) = (x− y+ 2z, x+ y−
z, 2x+ z, 2y−3z)

b. T : R3 → R4; T (x, y, z) = (x+ y+ z, 2x− y+
3z, z−3y, 3x+4z)
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b. ker T = span{(−4, 1, 3)}; B =
{(1, 0, 0), (0, 1, 0), (−4, 1, 3)}, im T =
span{(1, 2, 0, 3), (1, −1, −3, 0)}

Exercise 7.2.5 Show that every matrix X in Mnn

has the form X = AT −2A for some matrix A in Mnn.
[Hint: The dimension theorem.]

Exercise 7.2.6 In each case either prove the
statement or give an example in which it is false.
Throughout, let T : V → W be a linear transforma-
tion where V and W are finite dimensional.

a. If V =W , then ker T ⊆ im T .

b. If dim V = 5, dim W = 3, and dim (ker T ) = 2,
then T is onto.

c. If dim V = 5 and dim W = 4, then ker T 6= {0}.

d. If ker T =V , then W = {0}.

e. If W = {0}, then ker T =V .

f. If W =V , and im T ⊆ ker T , then T = 0.

g. If {e1, e2, e3} is a basis of V and
T (e1) = 0 = T (e2), then dim ( im T )≤ 1.

h. If dim (ker T ) ≤ dim W , then dim W ≥
1
2 dim V .

i. If T is one-to-one, then dim V ≤ dim W .

j. If dim V ≤ dim W , then T is one-to-one.

k. If T is onto, then dim V ≥ dim W .

l. If dim V ≥ dim W , then T is onto.

m. If {T (v1), . . . , T (vk)} is independent, then
{v1, . . . , vk} is independent.

n. If {v1, . . . , vk} spans V , then
{T (v1), . . . , T (vk)} spans W .

b. Yes. dim ( im T ) = 5 − dim (ker T ) = 3, so
im T =W as dim W = 3.

d. No. T = 0 : R2 → R2

f. No. T : R2 → R2, T (x, y) = (y, 0). Then
ker T = im T

h. Yes. dim V = dim (ker T ) + dim ( im T ) ≤
dim W + dim W = 2 dim W

j. No. Consider T : R2 → R2 with T (x, y) =
(y, 0).

l. No. Same example as (j).

n. No. Define T : R2 → R2 by T (x, y) = (x, 0).
If v1 = (1, 0) and v2 = (0, 1), then R2 =
span{v1, v2} but R2 6= span{T (v1), T (v2)}.

Exercise 7.2.7 Show that linear independence is
preserved by one-to-one transformations and that
spanning sets are preserved by onto transformations.
More precisely, if T : V → W is a linear transforma-
tion, show that:

a. If T is one-to-one and {v1, . . . , vn} is inde-
pendent in V , then {T (v1), . . . , T (vn)} is in-
dependent in W .

b. If T is onto and V = span{v1, . . . , vn}, then
W = span{T (v1), . . . , T (vn)}.

b. Given w in W , let w = T (v), v in V , and
write v = r1v1 + · · ·+ rnvn. Then w = T (v) =
r1T (v1)+ · · ·+ rnT (vn).

Exercise 7.2.8 Given {v1, . . . , vn} in a vec-
tor space V , define T : Rn → V by T (r1, . . . , rn) =
r1v1 + · · ·+ rnvn. Show that T is linear, and that:

a. T is one-to-one if and only if {v1, . . . , vn} is
independent.

b. T is onto if and only if V = span{v1, . . . , vn}.

b. im T = {∑i rivi | ri in R}= span{vi}.
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Exercise 7.2.9 Let T : V → V be a linear trans-
formation where V is finite dimensional. Show that
exactly one of (i) and (ii) holds: (i) T (v) = 0 for
some v 6= 0 in V ; (ii) T (x) = v has a solution x in V
for every v in V .

Exercise 7.2.10 Let T : Mnn →R denote the trace
map: T (A) = tr A for all A in Mnn. Show that
dim (ker T ) = n2 −1.
T is linear and onto. Hence 1 = dim R =
dim ( im T ) = dim (Mnn) − dim (ker T ) = n2 −
dim (ker T ).

Exercise 7.2.11 Show that the following are equiv-
alent for a linear transformation T : V →W .

ker T =V1. im T = {0}2.
T = 03.

Exercise 7.2.12 Let A and B be m× n and k× n
matrices, respectively. Assume that Ax = 0 im-
plies Bx = 0 for every n-column x. Show that
rank A ≥ rank B.
[Hint: Theorem 7.2.4.]
The condition means ker (TA) ⊆ ker (TB), so
dim [ker (TA)] ≤ dim [ker (TB)]. Then Theorem 7.2.4
gives dim [ im (TA)]≥ dim [ im (TB)]; that is, rank A ≥
rank B.

Exercise 7.2.13 Let A be an m × n matrix of
rank r. Thinking of Rn as rows, define V = {x in
Rm | xA = 0}. Show that dim V = m− r.

Exercise 7.2.14 Consider

V =

{[
a b
c d

]∣∣∣∣a+ c = b+d
}

a. Consider S : M22 → R with S
[

a b
c d

]
= a+

c−b−d. Show that S is linear and onto and
that V is a subspace of M22. Compute dim V .

b. Consider T : V → R with T
[

a b
c d

]
= a+ c.

Show that T is linear and onto, and use this
information to compute dim (ker T ).

Exercise 7.2.15 Define T : Pn → R by T [p(x)] =
the sum of all the coefficients of p(x).

a. Use the dimension theorem to show that
dim (ker T ) = n.

b. Conclude that {x− 1, x2 − 1, . . . , xn − 1} is a
basis of ker T .

b. B= {x−1, . . . , xn−1} is independent (distinct
degrees) and contained in ker T . Hence B is a
basis of ker T by (a).

Exercise 7.2.16 Use the dimension theorem to
prove Theorem 1.3.1: If A is an m× n matrix with
m < n, the system Ax = 0 of m homogeneous equa-
tions in n variables always has a nontrivial solution.

Exercise 7.2.17 Let B be an n×n matrix, and con-
sider the subspaces U = {A | A in Mmn, AB = 0} and
V = {AB | A in Mmn}. Show that dim U + dim V =
mn.

Exercise 7.2.18 Let U and V denote, respec-
tively, the spaces of even and odd polynomials in Pn.
Show that dim U + dim V = n+ 1. [Hint: Consider
T : Pn → Pn where T [p(x)] = p(x)− p(−x).]

Exercise 7.2.19 Show that every polynomial f (x)
in Pn−1 can be written as f (x) = p(x + 1)− p(x)
for some polynomial p(x) in Pn. [Hint: Define
T : Pn → Pn−1 by T [p(x)] = p(x+1)− p(x).]

Exercise 7.2.20 Let U and V denote the spaces of
symmetric and skew-symmetric n×n matrices. Show
that dim U + dim V = n2.
Define T : Mnn → Mnn by T (A) = A−AT for all A
in Mnn. Then ker T = U and im T = V by Ex-
ample 7.2.3, so the dimension theorem gives n2 =
dim Mnn = dim (U)+ dim (V ).

Exercise 7.2.21 Assume that B in Mnn satisfies
Bk = 0 for some k ≥ 1. Show that every matrix in
Mnn has the form BA−A for some A in Mnn. [Hint:
Show that T : Mnn → Mnn is linear and one-to-one
where
T (A) = BA−A for each A.]

Exercise 7.2.22 Fix a column y 6= 0 in Rn and let
U = {A in Mnn | Ay = 0}. Show that dim U =
n(n−1).
Define T : Mnn → Rn by T (A) = Ay for all A in
Mnn. Then T is linear with ker T = U , so it
is enough to show that T is onto (then dim U =
n2 − dim ( im T ) = n2 − n). We have T (0) = 0.
Let y =

[
y1 y2 · · · yn

]T 6= 0 in Rn. If yk 6= 0



384 CONTENTS

let ck = y−1
k y, and let c j = 0 if j 6= k. If A =[

c1 c2 · · · cn
]
, then T (A) = Ay = y1c1 + · · ·+

ykck + · · ·+ yncn = y. This shows that T is onto, as
required.

Exercise 7.2.23 If B in Mmn has rank r, let U = {A
in Mnn |BA= 0} and W = {BA |A in Mnn}. Show that
dim U = n(n− r) and dim W = nr. [Hint: Show that
U consists of all matrices A whose columns are in the
null space of B. Use Example 7.2.7.]

Exercise 7.2.24 Let T : V →V be a linear transfor-
mation where dim V = n. If ker T ∩ im T = {0}, show
that every vector v in V can be written v=u+w for
some u in ker T and w in im T . [Hint: Choose bases
B ⊆ ker T and D ⊆ im T , and use Exercise 6.3.33.]

Exercise 7.2.25 Let T :Rn →Rn be a linear opera-
tor of rank 1, where Rn is written as rows. Show that
there exist numbers a1, a2, . . . , an and b1, b2, . . . , bn

such that T (X) = XA for all rows X in Rn, where

A =


a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn
...

...
...

anb1 anb2 · · · anbn


[Hint: im T = Rw for w = (b1, . . . , bn) in Rn.]

Exercise 7.2.26 Prove Theorem 7.2.5.

Exercise 7.2.27 Let T : V →R be a nonzero linear
transformation, where dim V = n. Show that there
is a basis {e1, . . . , en} of V so that T (r1e1 + r2e2 +
· · ·+ rnen) = r1.

Exercise 7.2.28 Let f 6= 0 be a fixed polynomial
of degree m ≥ 1. If p is any polynomial, recall that
(p◦ f )(x) = p [ f (x)]. Define Tf : Pn → Pn+m by
Tf (p) = p◦ f .

a. Show that Tf is linear.

b. Show that Tf is one-to-one.

Exercise 7.2.29 Let U be a subspace of a finite
dimensional vector space V .

a. Show that U = ker T for some linear operator
T : V →V .

b. Show that U = im S for some linear operator
S : V → V . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

b. By Lemma 6.4.2, let {u1, . . . , um, . . . , un}
be a basis of V where {u1, . . . , um} is a ba-
sis of U . By Theorem 7.1.3 there is a linear
transformation S : V →V such that S(ui) = ui

for 1 ≤ i ≤ m, and S(ui) = 0 if i > m. Because
each ui is in im S, U ⊆ im S. But if S(v) is in
im S, write v = r1u1 + · · ·+ rmum + · · ·+ rnun.
Then S(v) = r1S(u1)+ · · ·+ rmS(um) = r1u1 +
· · ·+ rmum is in U . So im S ⊆U .

Exercise 7.2.30 Let V and W be finite dimensional
vector spaces.

a. Show that dim W ≤ dim V if and only if there
exists an onto linear transformation T : V →
W . [Hint: Theorem 6.4.1 and Theorem 7.1.3.]

b. Show that dim W ≥ dim V if and only if there
exists a one-to-one linear transformation T :
V → W . [Hint: Theorem 6.4.1 and Theo-
rem 7.1.3.]

Exercise 7.2.31 Let A and B be n×n matrices, and
assume that AXB = 0, X ∈ Mnn, implies X = 0. Show
that A and B are both invertible. [Hint: Dimension
Theorem.]
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